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ABSTRACT

In this paper, a new family of trees is generated by combining the given trees, and it proves that the result tree T;
is graceful and admits o - valuation. Further, by recursively attaching a given tree with the resultant, generates a bigger

family of trees T; fori = 2, and we prove that such trees are graceful and have o - valuation.
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1. INTRODUCTION

Let G (V,E) be a simple connected graph. A function ¢ is called a graceful labeling of a graph G with m edges,
if ¢ is an injection from the vertices of G to the set {0,1,2,...,m} such that when each edge uv is assigned the
label|p(u) — @ (v)|, the resulting edge labels are distinct. A graceful labelling ¢ is called an a (valuation) of G, if there

exists an integer A such that for each edge e = uw, either p(u) < A< @) or p(v) < A < @(w).

The Ringel — Kotzig conjecture, all trees are gracefully is a long standing conjecture. Special classes of trees have
been verified, but still this conjecture remains hard to prove. Also, many authors have given different methods to yield
bigger graceful trees from the known, graceful tree [1], [2], [4] and exhaustively provided in the dynamic survey by
Gallian [3]. In this direction, using the method of combining trees as defined by Sethuraman [6], a new family of trees have
been constructed recursively from the given tree and further it is proved that the resultant tree is graceful and admits

o - valuation.

Let G be any connected graph having p admissible vertices (a vertex of degree at least two). Let H be any graph
and take p copies of H. Thus, ¢ [0 H is the graph obtained by merging a chosen vertex of each copy of H with every
admissible ververtex G. Note that the method of combining trees follows from [6] and in that paper, the choice of the

graphs G and H are caterpillars, but here the graph H is a tree and its construction follows.
Let us define the following terms that are used in this paper that are followed in [6]. If T is a caterpillar, then

a) A vertex v of T which has at most one vertex of degree greater than or equal to two is called as penultimate

vertex. Denote one of its penultimate vertices as head and the other as tail.

b) The graph obtained by subdividing the unique edge incident with the head of T is represented as T~ and hence

T~ is also a caterpillar.

c¢) The unique edge incident with the head, which has the other end having degree at least two is called the neck

edge.

Let T' and T"' be any two copies of the caterpillar T. Then, S is the graph obtained by merging the head of T', T"'
and T~ together. See Figures 1, 2 and 3.
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Figure 1: A Caterpillar T

V¥

Figure 2: The Caterpillar T~
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Figure 3: The Tree S (Combining the Head of T', T"' and T~ Together)

Let Ty be any caterpillar and S; € S. Now, let us define T; = T, [ S;, by attaching the head of each copy S; With

all the admissible vertices of Tj.

In the similar way, for i > 2, define T; = T;_; U S; in a recursive manner and in this paper, we prove that T; is

graceful and admits O - valuation.
2.T;{ ADMITS a - VALUATION
In this section we prove that the tree T;, as constructed above is graceful and further admits o - valuation.
Theorem 2.1
The tree Ty admits @ - valuation.
Proof
Let m be the number of edges of the tree T;.

Now label the admissible vertices of T; from tail to head and head to tail of each copy of S} of S; and let it be

Uy, Uy, U, - Ug.

Introduce artificial edges between some pair of vertices of S} in such a way that, by joining the tail of T" and
T~ by an arc and also join the neck vertex of T~ of i" copy to (i + 1)** copy, if i is odd. Otherwise, join the tail of T"'
and T~ by an arc and also join the tails of T’ between i*" copy to (i + 1)** copy. Thus T; is the tree along with the

artificial edges (dotted lines). Refer Figure. 5.
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Represent the obtained tree with the labelled admissible vertices as a bipartite graph with the bipartition (4, B) as

follows,
A={uy_1:1 <i<t}andB= {uy,;:1<i <t}
Clearly (A, B) defines the bipartition of T;. Refer Figure. 6.
Now label the vertices of 4, that are, a4, a,, as, ..., a, bym,m — 1,m—2,..,m— (p — 1) and the vertices of B,

that is, by, by, bs, ..., bq by 0,1,2,3,...,q — 1. Refer Figure. 7.

Clearly, all the edge values of being distinct and varies from 1,2, 3, ..., m and by removal of all artificial edges

results the grace labelling of T; and further admits o - valuation (refer Figure. 8) With A = m — p.
Theorem 2.2

Fori = 2, the tree T; admits a - valuation.
Proof

Consider the tree T;_; and by induction, assume that T;_; has graceful numbering.

First, ignore the grace labelling of T;_; and consider the treeS;_ 1, then construct the treeT;, that is, T;_; [J S;_4 by
attaching the head of each copy S;_; with all admissible vertices of T;_;. Let M be the number of edges of T;.
Then introduce the artificial edges, and in a similar way represent the resultant tree as a bipartite graph (4, B), as defined in
theorem 2.1. Label the vertices of A that is, a4, a,, as, ey Oy by M,\M —1,M — 2,...,M — (p — 1) and the vertices of B,
that is, by, by, by, ..., bq by 0,1,2,3,...,q — 1. Clearly, all the edge values of a being distinct and varies from 1,2,3,... M
and by removal of all artificial edges results the grace labeling of T; and further it has o - valuation with A = M — p. Refer

Figure 9 and Figure 10.

Figure 4: The Caterpillar T,

Figure 5: T, with the Artificial Edges (Ty From Figure.4 and S As Figure.3)
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Figure 6: Bipartition of T
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Figure 7: a - Valuation of T4
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Figure 9: The Caterpillar of S,
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Figure 10: a - Valuation of T, = T, O S,
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In this paper we have proved that by recursively attaching a given tree with the caterpillar generates a family of

graceful trees. Further we conjecture that this recursive attachment still generate a family graceful trees by choosing not

necessarily a caterpillar, as the attachment graph (tree).
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